Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Adicionar filtros

Base de dados
Tipo de documento
Intervalo de ano
1.
IUBMB Life ; 75(4): 337-352, 2023 04.
Artigo em Inglês | MEDLINE | ID: covidwho-2284315

RESUMO

In October 2020, we were finally able to gather for a celebration of Eddy Fischer's 100th birthday. As with many other events, COVID had disrupted and restricted preparations for the gathering, which ultimately was held via ZOOM. Nevertheless, it was a wonderful opportunity to share a day with Eddy, an exceptional scientist and true renaissance man, and to appreciate his stellar contributions to science. Eddy Fischer, together with Ed Krebs, was responsible for the discovery of reversible protein phosphorylation, which launched the entire field of signal transduction. The importance of this seminal work is now being felt throughout the biotechnology industry with the development of drugs that target protein kinases, which have transformed the treatment of a wide array of cancers. I was privileged to have worked with Eddy both as a postdoc and a junior faculty member, during which time we laid the foundations for our current understanding of the protein tyrosine phosphatase (PTP) family of enzymes and their importance as critical regulators of signal transduction. This tribute to Eddy is based upon the talk I presented at the event, giving a personal perspective on Eddy's influence on my career, our early research efforts together in this area, and how the field has developed since then.


Assuntos
COVID-19 , Quercus , Humanos , Quercus/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Transdução de Sinais , Fosforilação
2.
Vet Microbiol ; 267: 109391, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: covidwho-1778497

RESUMO

Protein tyrosine phosphatase non-receptor type 14 (PTPN14) is a member of the protein tyrosine phosphatase (PTP) family which is a potential tumor suppressor. PTPs modulate the cellular level of tyrosine phosphorylation under normal and pathological conditions. Porcine epidemic diarrhea virus (PEDV) is one of the most important pathogens in the swine industry. Our previous membrane proteomics results showed that PTPN14 was markedly upregulated in PEDV-infected Vero cells. However, its biological roles in PEDV infection have not yet been investigated. In this study, we reported PTPN14 functions as a novel regulator of signal transducer and activator of transcription 3 (STAT3) phosphorylation during PEDV infection. Firstly, PTPN14 was markedly upregulated in PEDV-infected Vero cells with the decrease of STAT3 phosphorylation. Knockdown of PTPN14 or phosphatase inhibitor treatment promoted PEDV proliferation and increased the phosphorylation of STAT3 in Vero cells. On the contrary, overexpression of PTPN14 inhibits viral infection in Vero cells. Moreover, dephosphorylation of STAT3 by PTPN14 might occur in the cytoplasm but not in nucleus. Collectively, our results indicate that PTPN14 plays a negative role in regulating STAT3 activation in PEDV infected Vero cells and demonstrate another layer of regulation in PEDV infection.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Animais , Chlorocebus aethiops , Infecções por Coronavirus/patologia , Infecções por Coronavirus/veterinária , Vírus da Diarreia Epidêmica Suína/fisiologia , Proteínas Tirosina Fosfatases/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Suínos , Tirosina/metabolismo , Células Vero
3.
J Food Biochem ; 45(6): e13750, 2021 06.
Artigo em Inglês | MEDLINE | ID: covidwho-1218148

RESUMO

Nutraceuticals need special attention as preventive molecules to create a natural barrier against various dreadful diseases like cancer and to regulate metabolism. In the present study, two spices, Trachyspermum ammi and Cinnamomum verum, been identified as excellent Protein Tyrosine Phosphatases (PTPases) sources that play significant role in the regulation of cell signal transduction and developmental processes in plants as well as animals, being lucrative and potential targets for pharmacological modulation. PTPases from both cases were partially purified into 0%-40% and 40%-80% fractions based on ammonium sulfate saturation levels. Fraction (40%-80%) exhibited a purification level of 4.44-fold and 2.86-fold with specific activity of 44.06 and 23.33 U/mg for PTPases from T. ammi and C. verum, respectively. PTPases being found to be thermally stable up to 70°C imply their industrial significance. Kinetic studies showed Km values to be 7.14 and 8.33 mM, whereas the activation energy (Ea ) values were 25.89 and 29.13 kJ/mol, respectively. Divalent cations: Cu2+ , Zn2+ , and Mn2+ acted as inhibitors of PTPases, from both sources. The Ki values of inhibitors varied from 0.014-0.125 mM in the descending order Cu2+  > Zn2+  > Mn2+ and Mn2+  > Cu2+  > Zn2+ for PTPases from T. ammi and C. verum, respectively. The inhibitory effect of sodium metavanadate aligns with prominent PTPase characteristics. In addition to these properties, the thermostability of PTPases from two spices enhances their significance in industries with therapeutically vital products. Although the source of PTPases is culinary spices, further studies are required to establish the utilization of PTPases as nutraceuticals and in therapeutic formulations. PRACTICAL APPLICATIONS: For a healthy lifestyle, awareness needs to be created by humankind towards food habits to minimize illnesses. Numerous studies have explored the consumption of nutraceutical products acts as a natural barrier and immune booster for various human ailments including SARS-COV-2. PTPases play important roles in regulating intracellular signaling and, ultimately, biological function along with their structural features. The importance of PTPases and their inhibitors has been implicated in various diseases like cancer, diabetes, and obesity. Further investigations need to be undertaken to explore the therapeutic properties of PTPases in both in vivo and in vitro for their clinical significance.


Assuntos
Ammi , COVID-19 , Ammi/metabolismo , Animais , Cinnamomum zeylanicum/metabolismo , Suplementos Nutricionais , Humanos , Cinética , Proteínas Tirosina Fosfatases/metabolismo , SARS-CoV-2 , Especiarias
4.
EMBO Rep ; 22(5): e52141, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: covidwho-1151026

RESUMO

Tyrosine phosphorylation of secretion machinery proteins is a crucial regulatory mechanism for exocytosis. However, the participation of protein tyrosine phosphatases (PTPs) in different exocytosis stages has not been defined. Here we demonstrate that PTP-MEG2 controls multiple steps of catecholamine secretion. Biochemical and crystallographic analyses reveal key residues that govern the interaction between PTP-MEG2 and its substrate, a peptide containing the phosphorylated NSF-pY83 site, specify PTP-MEG2 substrate selectivity, and modulate the fusion of catecholamine-containing vesicles. Unexpectedly, delineation of PTP-MEG2 mutants along with the NSF binding interface reveals that PTP-MEG2 controls the fusion pore opening through NSF independent mechanisms. Utilizing bioinformatics search and biochemical and electrochemical screening approaches, we uncover that PTP-MEG2 regulates the opening and extension of the fusion pore by dephosphorylating the DYNAMIN2-pY125 and MUNC18-1-pY145 sites. Further structural and biochemical analyses confirmed the interaction of PTP-MEG2 with MUNC18-1-pY145 or DYNAMIN2-pY125 through a distinct structural basis compared with that of the NSF-pY83 site. Our studies thus provide mechanistic insights in complex exocytosis processes.


Assuntos
Proteínas Tirosina Fosfatases não Receptoras , Proteínas Tirosina Fosfatases , Peptídeos , Fosforilação , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases não Receptoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA